Vi har samlet et bredt team af eksperter inden for AI- og NLP-området. Deres uovertrufne forskning og prisvindende gennembrud fortsætter med at sætte branchestandarder og bringer os tættere på vores vision: At skabe en verden uden sprogbarrierer.
Førende stemmer på området
Vores forskerhold er ved at ændre den måde, mennesker kommunikerer på
-
João Graça
Medstifter og Chief Technology Officer
-
André Martins
VP for forskning
-
Paulo Dimas
VP for produktinnovation
-
José Souza
Staff AI Research Scientist
-
M. Amin Farajian
Senior AI-forsker
-
Fabio Kepler
Senior AI-forsker
-
Ricardo Rei
Senior AI-forsker
-
Catarina Farinha
AI Research Manager
-
João Alves
AI-forsker
-
Daan van Stigt
Senior AI-forsker
-
Maria Ana Henriques
R&D Projektleder
-
Nuno André
Senior Grants Coordinator
-
Vera Cabarrão
Senior AI Quality Manager
-
Marianna Buchicchio
Senior Manager AI Quality
-
João Godinho
Senior AI-forskningsingeniør
-
Pedro Mota
Senior AI-forskningsingeniør
-
Nuno Guerreiro
AI-forsker
-
José Pombal
AI-forsker
-
Pedro Martins
Senior AI-forsker
-
Muhammad Bilal
Senior Backend Engineering Manager
-
Ana Oliveira António
Junior Communications and Project Manager
-
António Novais
Junior Grants Coordinator
Projekter
Center for Responsible AI
The Center for Responsible AI is one of the largest centers dedicated to Responsible AI, bringing together ten startups, eight research centers, a law firm, and five industry leaders, that will collaborate to develop 21 innovative AI products leveraged by Responsible AI technologies such as equity, explainability, and sustainability. The center is co-funded by the Portuguese PRR.
UTTER
UTTER – Unified Transcription and Translation for Extended Reality – is a collaborative Research and Innovation project funded under Horizon Europe that aims to leverage large language models to build the next generation of multimodal eXtended reality (XR) technologies for transcription, translation, summarisation, and minuting. UTTER’s use-case prototypes will cover (i) a personal assistant for meetings that can improve communication in the online world and (ii) an advanced customer service assistant to support global markets.
QUARTZ
QUARTZ ("Quality-Aware Machine Translation") er et banebrydende forskningsprojekt, der er finansieret af ELISE Open Call, og som har til formål at opbygge ansvarlig MT for samtaledata: MT af høj kvalitet til at åbne nye markeder, hvor kritiske MT-fejl ikke kan tolereres.
MAIA
MAIA vil anvende avanceret maskinlæring og teknologier til behandling af naturligt sprog til at opbygge flersprogede AI-assistenter, der fjerner sprogbarrierer. MAIAs 'oversættelseslag' vil gøre det muligt for menneskelige agenter at yde kundesupport i realtid på alle sprog og med menneskelig kvalitet.
Brugerfokuseret Marian
Improve the pre-existing neural machine translation toolkit “Marian” to address the needs of CEF eTranslation and to broaden its user base (H2020 Co-Funded Project). Terminology, on-the-fly domain adaptation, better documentation and GPU optimization are the focus areas in this Marian iteration.
MT4ALL
Aims at building data for under-resourced languages in fields of public interest, such as Health and Justice. It’ll contribute to the CEF Automated Translation Building block by enlarging its coverage for language pairs and domains for which parallel data does not exist (H2020 Co-Funded Project).
Unbabel4EU
We’re working on advancing European language engines for borderless business communication. Create Europe’s Translation Layer, specifically, by enabling seamless human-quality translation between any pairing of the 24 official languages of the EU in different content types such as Email, Chat and Listings (P2020 Co-Funded Project).
APE-QUEST
Setting up a quality gate and crowdsourcing workflow to improve translation quality in specific domains. Boost CEF eTranslation with Automated Post-Editing (APE) & Quality Estimation (QE) for Electronic Exchange of Social Security Information (EESSI) and Online Dispute Resolution (ODR) DSIs and related national services (H2020 Co-Funded Project).
INTERACT
Rettidig og præcis kommunikation er afgørende for krisestyring, men hvad nu, hvis den eneste information, du har adgang til, er på et sprog, du ikke forstår? INTERACT er et tværfagligt europæisk projekt, der er skabt for at imødekomme behovet for kvalitetsoversættelse i scenarier med sundhedskrise.
Unbabel Scribe
Transcription can be a big piece of translation flows, especially when it comes to audiovisual content. This project aims to research & develop a technical solution for automatic transcription and translation of audiovisual content by leveraging a community of human translators (P2020 Co-Funded Project).
DeepSPIN
Deep learning er ved at revolutionere Natural Language Processing (NLP)-området med gennembrud inden for maskinoversættelse, talegenkendelse og spørgeskemabesvarelse. Nye sproggrænseflader (digitale assistenter, messenger-apps, kundeservicebots) er ved at blive de næste teknologier til problemfri, flersproget kommunikation mellem mennesker og maskiner.
Unbabels internationaliseringsplan
Unbabel’s Internationalization Plan (“Unbabel 2017-2019: Plano de Internacionalização”) is a project led by Unbabel and co-funded by Portugal 2020 – Sistema de Incentivos à Internacionalização das PME.
Unbabel 2017: Et nyt økosystem med maskin- og crowd-oversættelse
“Unbabel 2017: A new ecosystem of Machine + Crowd Translation” er et projekt, der drives af Unbabel og er medstiftet af Portugal 2020 – Sistema de Incentivos à Investigação e Desenvolvimento Tecnológico (SI I&DT)
Projekter & publikationer
MT-Telescope
MT-Telescope giver en finkornet, visuel sammenligning af to maskinoversættelse (MT)-systemers kvalitetspræstationer. Den løfter kølerhjelmen på den automatiske kvalitetsscore og giver brugerne mulighed for at filtrere kvalitetspræstationer efter nøgleord, terminologi og segmentlængde. MT-Telescope er tilgængelig som åben kildekode til gavn for det bredere MT R&D-fællesskab.
COMET
COMET (Crosslingual Optimized Metric for Evaluation of Translation) er en ny neural ramme til træning af flersprogede evalueringsmodeller til Maskinoversættelse (MT). COMET forudsiger menneskelige vurderinger af MT-kvalitet. Denne "klar til brug" trænede COMET-model er tilgængelig som åben kildekode til gavn for det bredere MT R&D-fællesskab.
MAIA
MAIA vil anvende avanceret maskinlæring og teknologier til behandling af naturligt sprog til at opbygge flersprogede AI-assistenter, der fjerner sprogbarrierer. MAIAs 'oversættelseslag' vil gøre det muligt for menneskelige agenter at yde kundesupport i realtid på alle sprog og med menneskelig kvalitet.
Brugerfokuseret Marian
Improve the pre-existing neural machine translation toolkit “Marian” to address the needs of CEF eTranslation and to broaden its user base (H2020 Co-Funded Project). Terminology, on-the-fly domain adaptation, better documentation and GPU optimization are the focus areas in this Marian iteneration.
MT4ALL
Aims at building data for under-resourced languages in fields of public interest, such as Health and Justice. It’ll contribute to the CEF Automated Translation Building block by enlarging its coverage for language pairs and domains for which parallel data does not exist (H2020 Co-Funded Project).
Unbabel4EU
We’re working on advancing European language engines for borderless business communication. Create Europe’s Translation Layer, specifically, by enabling seamless human-quality translation between any pairing of the 24 official languages of the EU in different content types such as Email, Chat and Listings (P2020 Co-Funded Project).
OpenKiwi
Quality estimation (QE) is one of the challenges in MT: it evaluates a system’s quality without access to reference translations. We released OpenKiwi, a PyTorch-based open-source framework that implements the best QE systems from WMT 2015-18 shared tasks. The accompanying paper won the best system paper at ACL 2019.
APE-QUEST
Setting up a quality gate and crowdsourcing workflow to improve translation quality in specific domains. Boost CEF eTranslation with Automated Post-Editing (APE) & Quality Estimation (QE) for Electronic Exchange of Social Security Information (EESSI) and Online Dispute Resolution (ODR) DSIs and related national services (H2020 Co-Funded Project).
INTERACT
Rettidig og præcis kommunikation er afgørende for krisestyring, men hvad nu, hvis den eneste information, du har adgang til, er på et sprog, du ikke forstår? INTERACT er et tværfagligt europæisk projekt, der er skabt for at imødekomme behovet for kvalitetsoversættelse i scenarier med sundhedskrise.
Unbabel Scribe
Transcription can be a big piece of translation flows, especially when it comes to audiovisual content. This project aims to research & develop a technical solution for automatic transcription and translation of audiovisual content by leveraging a community of human translators (P2020 Co-Funded Project).
DeepSPIN
Deep learning er ved at revolutionere Natural Language Processing (NLP)-området med gennembrud inden for maskinoversættelse, talegenkendelse og spørgeskemabesvarelse. Nye sproggrænseflader (digitale assistenter, messenger-apps, kundeservicebots) er ved at blive de næste teknologier til problemfri, flersproget kommunikation mellem mennesker og maskiner.
Værktøjer med åben kildekode
XCOMET
XCOMET is a cutting-edge, open-source metric designed to be more interpretable and better aligned with MQM human evaluations. XCOMET combines sentence-level evaluation, similar to neural metrics such as COMET and BLEURT, and error span detection capabilities.
TowerLLM
TowerLLM is a suite of multilingual large language models (LLM) optimized for translation-related tasks ranging from pre-translation, to translation and evaluation tasks, such as machine translation (MT), automatic post-editing (APE), and translation ranking. Tower is built on top of LLaMA2 [1], comes in two sizes — 7B and 13B parameters —, and currently supports 10 languages.
CometKiwi XL
CometKiwiXL is large language model (LLM) specialized in predicting the quality of a translation. CometKiwi XL (3.5B) and CometKiwi XXL (10.7B) are the open-sourced versions of our state-of-the-art Quality Estimation model.
MT-Telescope
MT-Telescope giver en finkornet, visuel sammenligning af to maskinoversættelse (MT)-systemers kvalitetspræstationer. Den løfter kølerhjelmen på den automatiske kvalitetsscore og giver brugerne mulighed for at filtrere kvalitetspræstationer efter nøgleord, terminologi og segmentlængde. MT-Telescope er tilgængelig som åben kildekode til gavn for det bredere MT R&D-fællesskab.
COMET
COMET (Crosslingual Optimized Metric for Evaluation of Translation) er en ny neural ramme til træning af flersprogede evalueringsmodeller til Maskinoversættelse (MT). COMET forudsiger menneskelige vurderinger af MT-kvalitet. Denne "klar til brug" trænede COMET-model er tilgængelig som åben kildekode til gavn for det bredere MT R&D-fællesskab.
OpenKiwi
Quality estimation (QE) is one of the challenges in MT: it evaluates a system’s quality without access to reference translations. We released OpenKiwi, a PyTorch-based open-source framework that implements the best QE systems from WMT 2015-18 shared tasks. The accompanying paper won the best system paper at ACL 2019.
Priser
Eighth Conference on Machine Translation
Winners of the WMT 2023 QE Shared Task
Eighth Conference on Machine Translation
Winners of the WMT 2023 Metrics Shared Task
COMET22
Winning submission for the Chinese-English language pair and the second best for the other two language pairs in the WMT2022 Metrics shared task
CometKiwi
Winning submission of the WMT 2022 Quality Estimation (QE) shared task
Best Presentation award for the Users and Providers track
AMTA Conference 2022
Best Paper Award
EAMT Conference 2022 ( Title: Searching for Cometinho: The Little Metric That Could)
Mest innovative virksomhed
Den mest innovative virksomhed (ved Game Changer Innovation Contest), TAUS (Translation Automation User Society)
2015, 2017Bedste globale Quality Estimation-system til maskinoversættelse
WMT - Konference for Maskinoversættelse
2016, 2019Bedste globale maskinoversættelse med automatisk efterredigeringssystem
WMT - Konference for Maskinoversættelse
2019Pris for bedste systemdemonstration
Sammenslutningen for computerlingvistik
2019Blanding af menneskelig og kunstig intelligens
Blending Human & Artificial Intelligence, i samarbejde med Concentrix, UK, National Innovation Awards
2019Bedste innovation inden for kundeservice
Bedste innovation inden for kundeservice, i samarbejde med Concentrix, ECCCSA - European Contact Center and Customer Service Awards
2019Bedste anvendelse af AI og tilknyttede teknologier
Bedste brug af AI og tilknyttede teknologier i samarbejde med Microsoft, ECCCSA – European Contact Center og Customer Service Awards
2019De mest innovative startups inden for kunstig intelligens for banebrydende teknologi
Liste over de mest innovative startups inden for kunstig intelligens til årets banebrydende teknologi, CBInsights,
2019De mest innovative virksomheder
Fast Companys årlige liste over verdens mest innovative virksomheder på 2020, Fast Company
2020Vinder af prisen for årets produkt
Vinderne af prisen Årets produkt, som uddeles af magasinet CUSTOMER
2021Bedste Explainability Approach-pris
Workshop om evaluering og sammenligning af NLP-systemer, i samme bygning på EMNLP,
2021