Uovertruffen teknologi + uovertruffen forskning

Vi har samlet et bredt team af eksperter inden for AI- og NLP-området. Deres uovertrufne forskning og prisvindende gennembrud fortsætter med at sætte branchestandarder og bringer os tættere på vores vision: At skabe en verden uden sprogbarrierer.

Førende stemmer på området

Vores forskerhold er ved at ændre den måde, mennesker kommunikerer på

  • João Graça, Co-Founder and Chief Technology Officer at Unbabel

    João Graça

    Medstifter og Chief Technology Officer

  • André Martins

    VP for forskning

  • Paulo Dimas

    VP for produktinnovation

  • José Souza

    Staff AI Research Scientist

  • M. Amin Farajian

    Senior AI-forsker

  • Fabio Kepler

    Senior AI-forsker

  • Ricardo Rei

    Ricardo Rei

    Senior AI-forsker

  • Catarina Farinha

    AI Research Manager

  • João Alves

    AI-forsker

  • Daan van Stigt

    Daan van Stigt

    Senior AI-forsker

  • Maria Ana Henriques

    Maria Ana Henriques

    R&D Projektleder

  • Nuno André

    Nuno André

    Senior Grants Coordinator

  • Vera Cabarrão

    Vera Cabarrão

    Senior AI Quality Manager

  • Marina Sánchez Torrón

    Senior Natural Language Analyst

  • Marianna Buchicchio

    Senior Manager AI Quality

  • Maximilian Kohl

    Maximilian Kohl

    Senior produktchef

  • João Godinho

    Senior AI-forskningsingeniør

  • Pedro Mota

    Senior AI-forskningsingeniør

  • Nuno Guerreiro

    Nuno Guerreiro

    AI-forsker

  • José Pombal

    AI-forsker

  • Pedro Martins

    Senior AI-forsker

  • Muhammad Bilal

    Muhammad Bilal

    Senior Backend Engineering Manager

Projekter

  • Center for Responsible AI

    The Center for Responsible AI is one of the largest centers dedicated to Responsible AI, bringing together ten startups, eight research centers, a law firm, and five industry leaders, that will collaborate to develop 21 innovative AI products leveraged by Responsible AI technologies such as equity, explainability, and sustainability. The center is co-funded by the Portuguese PRR.

  • UTTER

    UTTER – Unified Transcription and Translation for Extended Reality – is a collaborative Research and Innovation project funded under Horizon Europe that aims to leverage large language models to build the next generation of multimodal eXtended reality (XR) technologies for transcription, translation, summarisation, and minuting. UTTER’s use-case prototypes will cover (i) a personal assistant for meetings that can improve communication in the online world and (ii) an advanced customer service assistant to support global markets.

  • QUARTZ

    QUARTZ ("Quality-Aware Machine Translation") er et banebrydende forskningsprojekt, der er finansieret af ELISE Open Call, og som har til formål at opbygge ansvarlig MT for samtaledata: MT af høj kvalitet til at åbne nye markeder, hvor kritiske MT-fejl ikke kan tolereres.

  • MAIA

    MAIA vil anvende avanceret maskinlæring og teknologier til behandling af naturligt sprog til at opbygge flersprogede AI-assistenter, der fjerner sprogbarrierer. MAIAs 'oversættelseslag' vil gøre det muligt for menneskelige agenter at yde kundesupport i realtid på alle sprog og med menneskelig kvalitet.

  • Brugerfokuseret Marian

    Improve the pre-existing neural machine translation toolkit “Marian” to address the needs of CEF eTranslation and to broaden its user base (H2020 Co-Funded Project). Terminology, on-the-fly domain adaptation, better documentation and GPU optimization are the focus areas in this Marian iteration.

  • MT4ALL

    Aims at building data for under-resourced languages in fields of public interest, such as Health and Justice. It’ll contribute to the CEF Automated Translation Building block by enlarging its coverage for language pairs and domains for which parallel data does not exist (H2020 Co-Funded Project).

  • Unbabel4EU

    We’re working on advancing European language engines for borderless business communication. Create Europe’s Translation Layer, specifically, by enabling seamless human-quality translation between any pairing of the 24 official languages of the EU in different content types such as Email, Chat and Listings (P2020 Co-Funded Project).

  • APE-QUEST

    Setting up a quality gate and crowdsourcing workflow to improve translation quality in specific domains. Boost CEF eTranslation with Automated Post-Editing (APE) & Quality Estimation (QE) for Electronic Exchange of Social Security Information (EESSI) and Online Dispute Resolution (ODR) DSIs and related national services (H2020 Co-Funded Project).

  • INTERACT

    Rettidig og præcis kommunikation er afgørende for krisestyring, men hvad nu, hvis den eneste information, du har adgang til, er på et sprog, du ikke forstår? INTERACT er et tværfagligt europæisk projekt, der er skabt for at imødekomme behovet for kvalitetsoversættelse i scenarier med sundhedskrise.

  • Unbabel Scribe

    Transcription can be a big piece of translation flows, especially when it comes to audiovisual content. This project aims to research & develop a technical solution for automatic transcription and translation of audiovisual content by leveraging a community of human translators (P2020 Co-Funded Project).

  • DeepSPIN

    Deep learning er ved at revolutionere Natural Language Processing (NLP)-området med gennembrud inden for maskinoversættelse, talegenkendelse og spørgeskemabesvarelse. Nye sproggrænseflader (digitale assistenter, messenger-apps, kundeservicebots) er ved at blive de næste teknologier til problemfri, flersproget kommunikation mellem mennesker og maskiner.

  • Unbabels internationaliseringsplan

    Unbabel’s Internationalization Plan (“Unbabel 2017-2019: Plano de Internacionalização”) is a project led by Unbabel and co-funded by Portugal 2020 – Sistema de Incentivos à Internacionalização das PME.

  • Unbabel 2017: Et nyt økosystem med maskin- og crowd-oversættelse

    “Unbabel 2017: A new ecosystem of Machine + Crowd Translation” er et projekt, der drives af Unbabel og er medstiftet af Portugal 2020 – Sistema de Incentivos à Investigação e Desenvolvimento Tecnológico (SI I&DT)

    Få mere at vide

Værktøjer med åben kildekode

  • XCOMET

    XCOMET is a cutting-edge, open-source metric designed to be more interpretable and better aligned with MQM human evaluations. XCOMET combines sentence-level evaluation, similar to neural metrics such as COMET and BLEURT, and error span detection capabilities.

    Få mere at vide

  • TowerLLM

    TowerLLM is a suite of multilingual large language models (LLM) optimized for translation-related tasks ranging from pre-translation, to translation and evaluation tasks, such as machine translation (MT), automatic post-editing (APE), and translation ranking. Tower is built on top of LLaMA2 [1], comes in two sizes — 7B and 13B parameters —, and currently supports 10 languages.

    Få mere at vide

  • CometKiwi XL

    CometKiwiXL is large language model (LLM) specialized in predicting the quality of a translation. CometKiwi XL (3.5B) and CometKiwi XXL (10.7B) are the open-sourced versions of our state-of-the-art Quality Estimation model.

    Få mere at vide

  • MT-Telescope

    MT-Telescope giver en finkornet, visuel sammenligning af to maskinoversættelse (MT)-systemers kvalitetspræstationer. Den løfter kølerhjelmen på den automatiske kvalitetsscore og giver brugerne mulighed for at filtrere kvalitetspræstationer efter nøgleord, terminologi og segmentlængde. MT-Telescope er tilgængelig som åben kildekode til gavn for det bredere MT R&D-fællesskab.

  • COMET

    COMET (Crosslingual Optimized Metric for Evaluation of Translation) er en ny neural ramme til træning af flersprogede evalueringsmodeller til Maskinoversættelse (MT). COMET forudsiger menneskelige vurderinger af MT-kvalitet. Denne "klar til brug" trænede COMET-model er tilgængelig som åben kildekode til gavn for det bredere MT R&D-fællesskab.

  • OpenKiwi

    Quality estimation (QE) is one of the challenges in MT: it evaluates a system’s quality without access to reference translations. We released OpenKiwi, a PyTorch-based open-source framework that implements the best QE systems from WMT 2015-18 shared tasks. The accompanying paper won the best system paper at ACL 2019.

Priser

  • Eighth Conference on Machine Translation

    Winners of the WMT 2023 QE Shared Task

  • Eighth Conference on Machine Translation

    Winners of the WMT 2023 Metrics Shared Task

  • COMET22

    Winning submission for the Chinese-English language pair and the second best for the other two language pairs in the WMT2022 Metrics shared task

  • CometKiwi

    Winning submission of the WMT 2022 Quality Estimation (QE) shared task

  • Best Presentation award for the Users and Providers track

    AMTA Conference 2022

  • Best Paper Award

    EAMT Conference 2022 ( Title: Searching for Cometinho: The Little Metric That Could)

  • Mest innovative virksomhed

    Den mest innovative virksomhed (ved Game Changer Innovation Contest), TAUS (Translation Automation User Society)
    2015, 2017

  • Bedste globale Quality Estimation-system til maskinoversættelse

    WMT - Konference for Maskinoversættelse
    2016, 2019

  • Bedste globale maskinoversættelse med automatisk efterredigeringssystem

    WMT - Konference for Maskinoversættelse
    2019

  • Pris for bedste systemdemonstration

    Sammenslutningen for computerlingvistik
    2019

  • Blanding af menneskelig og kunstig intelligens

    Blending Human & Artificial Intelligence, i samarbejde med Concentrix, UK, National Innovation Awards
    2019

  • Bedste innovation inden for kundeservice

    Bedste innovation inden for kundeservice, i samarbejde med Concentrix, ECCCSA - European Contact Center and Customer Service Awards
    2019

  • Bedste anvendelse af AI og tilknyttede teknologier

    Bedste brug af AI og tilknyttede teknologier i samarbejde med Microsoft, ECCCSA – European Contact Center og Customer Service Awards
    2019

  • De mest innovative startups inden for kunstig intelligens for banebrydende teknologi

    Liste over de mest innovative startups inden for kunstig intelligens til årets banebrydende teknologi, CBInsights,
    2019

  • De mest innovative virksomheder

    Fast Companys årlige liste over verdens mest innovative virksomheder på 2020, Fast Company
    2020

  • Vinder af prisen for årets produkt

    Vinderne af prisen Årets produkt, som uddeles af magasinet CUSTOMER
    2021

  • Bedste Explainability Approach-pris

    Workshop om evaluering og sammenligning af NLP-systemer, i samme bygning på EMNLP,
    2021

Publikationer

Se alle publikationer
Duarte M. Alves, José Pombal, Nuno M. Guerreiro, Pedro H. Martins, João Alves, Amin Farajian, Ben Peters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal, Pierre Colombo, José G.C. de Souza, André F.T. Martins | COLM
Duarte M. Alves, Nuno M. Guerreiro, João Alves, José Pombal, Ricardo Rei, José G. C. de Souza, Pierre Colombo, André F. T. Martins | Findings of EMNLP 2023
Ricardo Rei, Nuno M. Guerreiro, José Pombal, Daan van Stigt, Marcos Treviso, Luisa Coheur, José G. C. de Souza, André Martins | WMT 2023
Nuno M. Guerreiro, Ricardo Rei, Daan van Stigt, Luisa Coheur, Pierre Colombo, André F.T. Martins | Association for Computational Linguistics
Manuel Faysse, Patrick Fernandes, Nuno M. Guerreiro, António Loison, Duarte M. Alves, Caio Corro, Nicolas Boizard, João Alves. Ricardo Rei, Pedro H. Martins, Antoni Bigata Casademunt10 François Yvon, André F.T. Martins, Gautier Viaud, Céline Hudelot, Pierre Colombo | TMLR
Nuno M. Guerreiro, Duarte Alves, Jonas Waldendorf, Barry Haddow, Alexandra Birch, Pierre Colombo, André F. T. Martins | TACL Transactions of the Association for Computational Linguistics
Taisiya Glushkova, Chryssa Zerva, Ricardo Rei, André Martins | Findings of the Association for Computational Linguistics: EMNLP 2021
Patrick Fernandes, Kayo Yin, Graham Neubig, André Martins | 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Ben Peters, André Martins | 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
António Lopes, Amin Farajian, Rachel Bawden, Michael Zhang, André Martins | 22nd Annual Conference of the European Association for Machine Translation
António Góis, André Martins | Machine Translation Summit XVII: Research Track
DeutschFrançaisNLdanskSvenskaEnglish